
Biasanya, bahan yang menyerap cahaya dengan energi tinggi akan memancarkan cahaya yang lebih rendah energinya, seperti pada cat fosfor yang menyerap UV dan mengeluarkan cahaya neon berwarna. Tetapi ada fenomena unik bernama up-conversion photoluminescence atau UCPL, di mana bahan menyerap cahaya dengan energi rendah, contohnya cahaya inframerah, dan memancarkan cahaya yang lebih terang dan berenergi tinggi.
Peneliti dari Jepang, RIKEN Center for Advanced Photonics, mempelajari bagaimana nanotube karbon, tabung kecil terbuat dari karbon, dapat melakukan UCPL. Sebelumnya, para ilmuwan menganggap bahwa UCPL hanya terjadi jika ada cacat pada struktur nanotube untuk menangkap exciton, yaitu partikel gabungan dari elektron dan lubang yang ditinggalkannya.
Temuan terbaru menunjukkan bahwa UCPL dapat terjadi secara efisien pada nanotube karbon yang murni tanpa cacat. Hal ini didasarkan pada mekanisme intrinsic di mana exciton yang terbentuk menyerap energi tambahan dari phonon, yaitu getaran kecil dalam material seperti gelombang suara kuantum, sehingga membentuk exciton gelap yang kemudian memancarkan cahaya lebih kuat.
Semakin tinggi suhu, semakin banyak phonon yang aktif, sehingga energi yang bisa diserap exciton semakin besar dan efek UCPL makin meningkat. Penemuan ini membuka peluang baru seperti meningkatkan performa panel surya dengan mengubah cahaya inframerah yang biasanya terbuang menjadi cahaya visible yang berguna.
Selain itu, penelitian ini juga memiliki potensi dalam pengembangan alat pencitraan medis yang lebih aman menggunakan cahaya inframerah, serta teknologi pendinginan bahan dengan laser. Dengan memahami mekanisme UCPL secara intrinsic, desain perangkat optoelektronik dan fotonik masa depan bisa lebih bersih, efisien, dan fleksibel.